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For the conjugated oligomers of the type (M)N described by a tight-binding Hamiltonian with the nearest-
neighbor interaction between monomers M of otherwise arbitrary electronic structure, the bridge-mediated
donor-acceptor effective coupling is proved to be ruled by an exponential lawTDA

0 exp(-δN). Previously,
this kind of dependence has been recovered in many numerical treatments or guessed on phenomenological
basis. The exact expressions of the decay constantδ and pre-exponential factorTDA

0 obtained in terms of the
monomer Green function provide, for the first time, an analytical relationship between the oligomerπ electronic
structure and through-conjugated-bridge tunneling efficiency. For the fundamental band gap a simple analytical
approximation of the effective coupling that relatesδ to the model of through-rectangular-barrier tunneling
is also given. The dependence of the effective coupling on energy of tunneling electron (hole) is examined
in detail and illustrated for oligomers of polyenes, polyparaphenylenes, and polyheterocycles. The results
obtained suggest a quick and reliable estimate of the effective coupling with a deep insight into the physical
origins of related switching abilities of conjugated oligomers as a useful alternative to lengthy numerical
calculations.

I. Introduction

Numerous processes that are met in physics, chemistry, and
biology can be put onto a formal scheme D˜BA f DBÃ that
implies the transfer of charge or excitation from (conditionally)
donor (D) to acceptor (A) through a bridge B. Generally
speaking, the interaction between donor and acceptor, which
makes possible that kind of processes, involves all states of
bridging subsystem. However, under certain conditions the
D-A interaction can be characterized by a single energy
dependent parameterseffective trough-bridge coupling, which
has been proven to play the fundamental role in charge and
excitation energy transfer phenomena.1-6

It is now well established2-6 that the effective coupling in
donor/bridge/acceptor (DBA) systems can be expressed in terms
of a bridge Green function which suggests the physically clear
basis for computing this quantity explicitly or implicitly in
various contexts.2-14 For a bridge modeled by a monoatomic
chain, the explicit expression of Green function can also be
found,4,6,15 and thus far, this model remains dominating in
relevant analytical and semi-analytical treatments.2,4,6,8-13 The
focus of this work is just on this latter aspect of the problem
pioneered by McConnell,1 who found the asymptotic energy
dependence of effective coupling through a nonalternating CH2

chain in the bridge assisted electron transfer.
Specifically, we consider an important class of bridging

molecules-conjugated oligomers, which can be approached by
the Green function formalism up to obtaining the exact closed
expression which relates the effective coupling to the monomer
(oligomer building blocks) Green function. In general terms,
this makes possible to oversee the electron transmitting proper-
ties of conjugated bridges at the monomer level.

The effective through-bridge coupling squared enters the
intramolecular donor-acceptor electron transfer rate as a principal
factor.16,17 The linear-response tunnel conductance of metal-
molecular heterojunctions,11,14,18 where a molecule spanned
between electrodes acts as a molecular wire,19-21 is proportional
to this same quantity. Therefore, the present detailed discussion
of the through-bridge effective coupling on the basis of the exact
expression of the Green function for conjugated oligomers, that
has been found by us recently,22 is of immediate use not only
in the field of the electron transfer but also for measurements
of current-voltage characteristics in metal-molecule-metal
heterostructures.19-21 From this perspective our work aims at
the development of a realistic analytical description of electrical
current across a single molecule. This work concerns only the
tunnel current and related switching abilities of conjugated
oligomers. In a subsequent publication we shall discuss the
resonance transmission spectrum of “elastic” metal-molecular
heterojunctions.
The paper is organized as follows. Section II proceeds with

a brief formal introduction of the effective coupling and gives
its exact analytical definition in terms of the monomer Green
function for a tight-binding Hamiltonian of conjugated bridges.
We establish the interrelation between the monomer Green
function and the asymptotic behavior and zeros of effective
coupling as a function of energy in sections III and IV,
respectively. Section V exemplifies the analytical relations
derived in preceding Sections by oligomers of polyene, poly-
paraphenylene, and polyheterocycles. A brief discussion of
some related results is also given in Section V. The concluding
remarks of section VI outline the main findings of this
presentation.

II. Bridge-Mediated Effective Coupling

In this section we introduce the concept of effective coupling
which is broadly used in the theory of non-adiabatic bridge-
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assisted electron (hole) transfer, see refs 1-6, 16, and 17, and
literature given therein. Briefly, the electron transfer event is
thought to occur under the influence of a weak donor-acceptor
interaction, whenever electron has the same energy in the initial
(at donor) and final (at acceptor) states, and at a fixed geometry
of the bridging molecule, whose end atoms are coupled with
donor and acceptor via the electron-transfer resonance interac-
tion.
To put this concept on formal basis, it is usually assumed

that the presence of electron at donor (acceptor) described by
the HamiltonianĤD (ĤA) can be approximated by a single orbital
|D〉 (|A〉), ĤD|D〉 ) ε|D〉 (ĤA|A〉 ) ε|A〉), whose overlap with
the bridge end-atom orbitals|1Rl〉 and |NRr〉 is represented by
the identical hopping integralâh. Then, denoting the Hamilto-
nians of DBA system and bridging molecule (in the present
context the latter is associated with an oligomer ofNmonomers
M in conjugation) asĤ andĤOM, respectively, and the operator
of the Green function of the bridging molecule asĜOM )
(E - ĤOM)-1, the eigenvalue problem for the DBA system,
det|HmR,nR′ - δm,nδR,R′E| ) 0, can be expressed in the form23

The notations introduced above have the following meanings:
HmR,nR′ ) 〈mR|Ĥ|nR′〉, Ĥ ) ĤOM + ĤD + ĤA + âh(|D〉〈1Rl| +
|A〉〈NRr| + h.c.),GmRl

,nRr

OM (E) ) 〈mRl| (E - ĤOM)-1|nRr〉, |nR〉 )
|D〉, |A〉, whenn) 0, (N+ 1), respectively, and ket|nR〉, where
n runs over all monomers of the bridge (from the first toNth),
identifies the 2pz atomic orbital of theRth atom in thenth
monomer, and these orbitals are supposed to form a complete
orthonormalized basis of the bridge states; indexes l and r refer
to the left and right binding sites (atoms) of the monomer in
the oligomer chain. At this stage the HamiltonianĤOM is not
needed to be specified.
The solutions to the above set of equations determine (exactly)

all one-electron energies in the system except those correspond-
ing to degenerate oligomer bands.24 If the contribution of bridge
states to the donor (acceptor) state and vice versa is small (see
the extensive discussion of this point in ref 6) the two energies
of originally degenerate donor and acceptor levels can (ap-
proximately) be defined as

where, unlike the exact eq 1, the argument of the bridge Green
function matrix elementsE is replaced by the zero-order donor
(acceptor) energyε.
As it is seen from eq 2, the quantity

plays the role of the bridge mediated effective coupling between
donor and acceptor that removes the donor-acceptor degeneracy.
In an isolated DBA system described by HamiltonianĤ, such
a coupling leads to oscillations of the electron density at donor
and acceptor with the frequencyTDA/p4,6 (reversible electron
transfer from donor to acceptor and backward). Under certain
conditions regarding the interaction of DBA with the outer
world, which can be further specified (see, e.g., refs 1-6, 8, 9,
16, and 17), but this is outside the scope of this presentation:
the effective coupling gives rise to irreversible donor-acceptor
electron transfer with the rate proportional toTDA

2 .1-4,6,16,17

The validity of approximation 2 has already been examined
in detail.6 Therefore, we restrict ourselves to a few remarks
about its applicability. Obviously, eq 2 is valid if and only if
both the renormalization correction to the donor (acceptor)
zeroth order energyε (the second term of the right hand side in
eq 2) and the splitting (third) term are small in comparison with
the difference∆ε betweenε and the bridge band edges expressed
in units of the intermonomer electron-transfer resonance interac-
tion âC-C. This condition is satisfied if, firstly,|TDA/âC-C| ,
∆ε, and, secondly, if both energiesE+ andE- are outside the
oligomer one-electron bands defined in the limitN f ∞. The
latter restriction of the validity of the two-state description of
DBA systems and thus, of the validity of the concept of effective
coupling, is particularly important. It has been implied rather
than emphasized previously.6 Moreover, it was rarely controlled
in numerous computations of the effective coupling.
Since the width of band gaps of linear conjugated molecules

is of the order of|âC-C| or less, introducing the effective
coupling makes sense if|TDA/âC-C|, 1. For comparable values
of |âh| and |âC-C| the latter inequality is equivalent to

that, in physical terms, implies donor-acceptor electron transfer
occurring due to tunneling across the bridging molecule.
The above derivation of effective coupling is essentially based

on the method of Lifshits25 and Koster and Slater26 that in the
same context has been used previously.2,12 The expression of
effective coupling in terms of the Green function of bridging
molecule given in eq 3 can also be obtained by using the Lo¨wdin
partitioning technique,27 see, e.g., refs 3 and 6.
To advance this derivation further we shall define the bridge

Green function appeared in eq 3. For the conjugated oligomers
of the type M-M-‚‚‚-M it takes the form22

whereGRl,Rr

M (E) is the monomer Green function matrix element
referred to binding sitesRl andRr, the sites of the intermonomer
interaction, andê is related to the electron energy in the DBA
system by the following equation24

where

The expression 5 has been obtained under the only limitation
with respect to the electronic HamiltonianĤOM:22 the assumption
of nearest-neighbor interaction between monomers in the
oligomer chain. In the particular case of polyene oligomers,
an equivalent expression was suggested in ref 6. Earlier,28 all
matrix elements of the polyene Green function for the tight-
binding Hamiltonian have been found.
Equations 5-7 are valid for any energies. Equation 6 has

the meaning of the dispersion relation and, as such, determines
the allowed and forbidden zones, i.e., the bands and gaps in
the energy spectrum of linear sequence M-M-‚‚‚-M in the
limit Nf ∞.24 The (dimensionless) wave vectorê is real within
the band energy intervals, 0e ê e π, but it acquires complex

E) ε + âh2 [G1Rl
,1Rl

OM (E) ( G1Rl
,NRr

OM (E)] (1)

E( ) ε + âh2G1Rl
,1Rl

OM (ε) ( âh2G1Rl
,NRr

OM (ε) (2)

TDA ) 1
2
|E+ - E-| ) âh2|G1Rl

,NRr

OM (E) ε)| (3)

|âC-CG1Rl
,NRr

OM (ε)|, 1 (4)

G1Rl
,NRr

OM (E) )
GRl,Rr

M (E) sinê

sin(êN) - âC-CGRl,Rr

M (E) sin[ê(N- 1)]
(5)

2 cosê ) f(E) (6)

âC-CGRl,Rr

M (E)f(E) ) 1- âC-C
2 [GRl,Rl

M (E) GRr,Rr

M (E) -

(GRl,Rr

M (E))2] (7)
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values,ê ) ( iδ or ê ) π ( iδ, within the band gaps. In this
latter case, the dependence ofδ on energy is given by the
equation

that directly follows from eq 6 for|f(E)|/2 g 1. The gap
boundaries (band edges) can also be found from eq 6, often in
an analytical form.24,29

The replacement ofê in eq 5 by the complex wave vector
gives

where the upper signs correspond toê ) π ( iδ, and lower
signs correspond toê ) (iδ, andδ > 0. Inequality 4 can be
satisfied, ifeδN . 1. Hence, under the latter condition we have
from eqs 3 and 9

where the preexponential factor is given by

As is shown by us previously,24 if |âC-CGRl,Rr

M (E)| > 1, theπ
electron spectrum of the oligomer contains ingap (local) states
at the energies, whereGRl,Rl

M (E) ) 0. (If |âC-CGRl,Rr

M (E)| ) 1,
the neighboring bands join each other at the energies, where
GRl,Rl

M (E) ) 0,24 so that at these energies the concept of
effective coupling is not applicable.) In such a special case
further analysis is required that will be published elsewhere.
Here, we only note that, if the denominator of the right-hand
side of eq 11 turns to zero or has nearly zero value (and this
can be the case only if|âC-CGRl,Rr

M (E)| > 1), the definition of
the preexponential factor given in eq 11 is incorrect. Neverthe-
less, exponential dependence in eq 10 withδ given in eq 8
remains to be valid but with another definition ofTDA

0 and at
larger oligomer lengths, i.e., at the energies of ingap states and
close to them the conditioneδN . 1 becomes to be insufficient.
With account to the restrictions just specified, eq 10 with

the exponential decay constant and preexponential factor
determined by eqs 8 and 11, respectively, represent a physically
consistent definition of donor-acceptor through bridge coupling.
Above all, the derivation of this equation presents a proof that
tunneling across the band gap of a linear molecule is described
by the same dependence on the molecule length as the
probabilityWof tunneling across a rectangular barrier of height
V on the barrier widthL ) aN: W ∼ e-2κL, whereκ ) p-1

x2m*(V-E), E is the energy of tunneling electron,m* is the
electron effective mass, anda is the lattice constant of the linear
molecule. Earlier, such a dependence was often guessed14,30,31

but never proved.
Furthermore, provided the monomer Green functions

GRl,Rl

M (E), GRr,Rr

M (E) andGRl,Rr

M (E) are known (and these can quite
easily be found in many cases described by the tight-binding
Hamiltonian, see below), eq 10 gives an analytical relationship
between the value ofTDA (that is probability of electron
tunneling across the bridge) and the electronic structure of the
bridge and its length. Importantly, this relationship is obtained

in the framework of a model that has been proven to give an
adequate description of linear conjugated molecules.32

Note also that with the replacementâh2 by the spectral density,
the square of the effective coupling, (TDA/âC-C)2, determines
the tunnel conductance in the linear-response theory.11,18

Therefore, the model-exact expression of the effective coupling
derived above gives an analytical solution to a particular problem
of current experimental19-21 and theoretical14,21,31 interest.
Moreover, eqs 8-11 can be generalized to the case of oligomers
of the kind M-M-‚‚‚-M-M1, where M is a two-component
monomer M1-M2

18 (such as oligomers of poly(phenylene-
vinylene), polyaniline, etc.). Thus, an analytical exponential
dependence, that has been originally found by McConnell for
a chain of one site, one level monomers, is extended to cover
essentially all conjugated oligomers.
Setting in eq 11GRl,Rl

M (E) ) GRr,Rr

M (E) ) GRl,Rr

M (E) ) E-1 )
-(2âC-Ccosh δ)-1 and substituting the result in eq 10, one
obtains

where

To restore the McConnell original result, one has to set in
eq 12|E/(2âC-C)|. 1. Then, one getsTDA ) (âh2/|âC-C|)e-δN,
whereδ ) ln|E/âC-C|.1
One of the disappointing features of this result is that its

validity requires the energy of tunneling electron to be remote
from the bridge states. From the mathematical point of view,
the McConnell formula describes the asymptotic behavior of
effective coupling as a function of energy. Nevertheless, it is
of interest to answer the question: does or does not survive the
McConnell result, if building blocks of the bridging molecule
possess some internal structure?

III. Asymptotic Behavior of Effective Coupling

Any Green function matrix element can be represented as a
rational function. In particular, âC-CGRl,Rr

M (E) )
P′N′M

(E)/PNM(E), wherePNM(E) andP′N′M
(E) are polynomials of

theNMth andN′Mth (N′M < NM) degree, respectively, andNM is
equal to, or less, than the number ofπ electron centers in the
monomer. Therefore, for energies which are sufficiently distant
from the oligomer bands, we can write

where the values ofC andNM - N′M are determined by the
particular electronic structure of monomer, andâ is some energy
scale which is convenient to use for the given monomer, see
below.
On the other hand, under the assumption that polynomial

P′N′M
(E) does not have roots outsideπ electron bands (the

special caseGRl,Rr

M (E) ) 0 is discussed later) it follows from
eqs 8 and 13 that for large values of|E| and eδ we have eδ )
|âC-CGRl,Rr

M (E)|-1. Then, eq 10 transforms intoTDA )
(âh2/|âC-C|) e-δN or, equivalently, TDA )
(âh2/|âC-C|)|âC-CGRl,Rr

M (E)|N. Thus, with account to eq 13

δ ) ln(|f(E)|/2+ x[f(E)/2]2 - 1) (8)

G1Rl
,NRr

OM (E) )
(-1)NGRl,Rr

M (E) sinhδ

sinh(δ N) ( âC-CGRl,Rr

M (E) sinh[δ(N- 1)]
(9)

TDA ) TDA
0 e-δN (10)

TDA
0 ) âh2| 2sinh(δ)GRl,Rr

M (E)

1( âC-CGRl,Rr

M (E) e-δ| (11)

|TDA| ) 2âh2 sinhδ
|âC-C|

e-δ(N+1) (12)

δ ) ln (|E/(2âC-C)| + x[E/(2âC-C)]
2 - 1)

lim
|E|f∞|âC-CGRl,Rr

M (E)| ) lim
|E|f∞|âC-C

â
GRl,Rr

M (Eâ)| ) C|Eâ|-(NM-N′M)

(13)
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Hence, the asymptotics of the effective donor-acceptor coupling
through an oligomer is determined by the asymptotic behavior
of the corresponding monomer Green function.
It may seem at first sight that the larger is the number ofπ

centers in the monomer, i.e., the larger is the numberNM, the
larger is the decay constant of effective coupling. But in
applications of the above equation, one should take into account
the real distance which corresponds to the chain ofNmonomers.
For example, for nonalternating CH2-bridge (M) CH2) NM -
N′M ) C ) 1, and for polyene bridge (M) C2H2) NM - N′M )
2, C ) 1, i.e., according to eq 14, the decay constant for the
latter bridge is two times larger. But the chain ofN vinylene
groups is equal (in the number of carbons) to the length of the
chain of 2N CH groups, so that the effective coupling across
these two bridges is, as expected, identical if compared far from
the bridge states.

IV. Zeros of Effective Coupling

By the definition given in eq 3, the effective coupling vanishes
at energies, where the bridge Green functionG1Rl

,NRr

OM (E) ) 0
which is the case, whenever (see eqs 10 and 11)

The above equation states that zeros of effective coupling
coincide with zeros of the nondiagonalmonomerGreen function
element which refers to the binding sites of monomer in the
given oligomer bridge. It can be concluded, therefore, the
bridging molecules, whose building blocks possess the property
expressed in eq 15, will break the electronic contact at energies
given by solutions to the above equation.
As it follows from eq 8, ifâC-C

2 GRl,Rl

M (E)GRr,Rr

M (E) * 1, zeros
of GRl,Rr

M (E) are reflected in the singular behavior of decay
constant as a function of energy. But if equation

is satisfied simultaneously with eq 15, the decay constant
becomes indefinite, see eqs 6 and 7. This can be the case of
certain relations between parameters determining the monomer
electronic structure that has to be examined separately.24

It is also seen from eqs 6 and 7 that except for the case of
the gap closing,24 eq 15 can have solutions only outside oligomer
π electron bands.33 If such solutions do exist, the monotonic
behavior of the decay constant discussed in the preceding
section, will be replaced by a singular (highly nonmonotonic)
dependence near energies determined by eq 15. Accordingly,
the singularities of decay constant reveal themselves as zeros
of effective coupling as a function of energy, see illustrative
examples represented below. This result is in an obvious
conflict with expectations based on the CH2-chain model which
predicts the monotonic decrease ofTDA with increase of|E|,
see eq 12.
Equation 15 that determines zeros of effective coupling

directly follows from the definition of the bridge Green function
9. Apart eq 15, there is another, somewhat less obvious
condition, the fulfillment of which also nullifies through bridge
coupling. As it is seen from eqs 8 and 10, for nonzero
GRl,Rr

M (E) the value ofTDA can still be equal to zero, if among
poles of the bilinear combination

there are others than the poles ofGRl,Rr

M (E), or if the poles of the
former function are of higher order than those of the latter. Then,
at the energies which are solutions to equation

the decay constant is infinite, see eq 8, and consequently, the
bridge Green function, as well as the effective coupling are equal
to zero.
To notice, the number of poles of bilinear combination 17 is

restricted by the number ofπ centers in monomer and can be
larger than the number of poles of diagonal and nondiagonal
Green function matrix elements which enter this combination.
We can prove this statement in the general case and it will be
illustrated in the next section by a particular example.
Since the solutions of eq 18 correspond to monomer levels,

and therefore, the interaction between donor (acceptor) and
bridging molecule cannot be regarded as a small perturbation,
it is the right place to emphasize that zeros of effective coupling
have the clear physical consequence: the break of through-
bridge electronic coupling, independent of the values of electron
energy to which they refer. The particular manifestation of this
property, e.g., the character of the dependence of physical
quantities related to the effective coupling on electron energy,
presents another problem which has to be examined separately
and in its particular context.34

To this point, the relations obtained and conclusions made
are rather general and can be applied to any linear molecules
consisting of repeating units of arbitrary complexity and coupled
via the nearest-neighbor interaction. Below, we center our
attention on some particular oligomers which are of interest as
potential molecular wires.19-21

V. Comparison of Effective Coupling through Different
Oligomers

It is instructive to illustrate the above general discussion by
comparing the effective coupling for representative oligomer-
bridges such as polyenes, polyparaphenylenes (PPP), and
polyheterocycles shown in Figure 1. It is also the aim of this
section to specify the analytical expression of effective coupling
for a number of particular cases.
To calculateGR,R′

M (E) ) 〈R|(E - ĤM)-1|R′〉, whereR, R′ )
Rl(r), we have to define the HamiltonianĤM of the corresponding
monomers: vinylene group (M) C2H2), phenyl ring (M)
C6H4), and heterocycle (M) C4H2X), where X denotes
heteroatom, e.g., sulfur, nitrogen, or oxygen.
Due to the comparatively small number of atoms, the

monomer Green functions (and hence, the bridge Green func-
tion) can be found with very high accuracy, and this is one but
not the only strong side of the present approach. For the sake
of simplicity and to proceed analytically, we use here the
standard one-electron Hu¨ckel model which operates with two
types of integrals only:35 the Coulomb integral, which deter-
mines the electron site energy at the given atom, and hopping
integral, which determines the resonance electron transfer energy
between neighboring atoms. Using the Coulomb integral for
carbon as the energy reference point which is set equal to zero,
and denoting the hopping integrals associated with double
(CdC) and single (C-C) carbon-carbon bonds in polyene
chain, and within monomers C6H4 and C4H2X (see Figure 1)

δ ) - ln|âC-CGRl,Rr

M (E)| ) (NM - N′M) ln|Eâ| - ln C (14)

GRl,Rr

M (E) ) 0 (15)

âC-C
2 GRl,Rl

M (E)GRr,Rr

M (E) ) 1 (16)

GRl,Rl

M (E)GRr,Rr

M (E) - (GRl,Rr

M (E))2 (17)

GRl,Rr

M (E)

GRl,Rl

M (E)GRr,Rr

M (E) - [GRl,Rr

M (E)]2
) 0 (18)
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asâeη andâe-η, respectively, for the monomers specified above
we find24,29

and

where parameterγint ) âC-C/â represents the intermonomer
resonance interaction energy;εX is the difference in Coulomb
integrals of heteroatom X and carbon C, andγX is the X-C
resonance interaction energy. In eqs 19, 20, and henceforth,
the electron energy is expressed in units ofâ without changes
in notation. Note that for polyeneγint ) e-η, and for PPP, and
heterocyclic oligomers, parameterγint accounts for possible
deviations of the carbon backbone from the ideally alternated
carbon chain. For more details on the monomer Green functions
see refs 24 and 29.
A. Asymptotics of Effective Coupling. Using the asymp-

totics of the monomer Green functions 19 in eq 13, one can
easily obtain the following expressions for the decay constants
of conjugated bridges represented by oligomers of polyene, PPP,
and polyheterocycles (the case of CH2-chain is also supple-
mented for comparison)

Equation 21 gives an interesting insight into the nature of
electron tunneling across aromatic-ring-based oligomers. Firstly,
it makes apparent that the noncoplanarity of monomers in the
bridging molecule can substantially affect (suppress) the effec-
tive coupling, if the electron energy is not too distant from the
oligomer π bands, so that the second term in the right-hand
side of eq 14 can compete with the first one. The physical
explanation of the effect is as follows: the twisting of aromatic
rings with respect to each other reduces the degree ofπ
conjugation. Therefore, it is expected that in noncoplanar
oligomersγint is less than unity and that this parameter decreases
monotonically with the increase of torsion angle between
neighboring monomers.36 This gives an increasing contribution
to the decay constant which is linear in|ln γint|.
Secondly, eq 21 shows that the Peierls distortions which result

in the quinoidlike geometry of carbon backbone of PPP,γint ∼
eη, produce no or negligible effect on the decay constantδ. By
contrast, in the aromatic form of PPP,γint ∼e-η, δ increases
linearly with the increase of alternation parameter. This
conclusion is based on the assumption that the dependence of
γint on η is the same as in a polyparaphenylene chain with
regularly alternating C-C bonds, whereγint ) eη andγint )
e-η (η > 0) in the quinoid and aromatic conformations of the
carbon backbone, respectively.
And thirdly, at the energies which are far from the oligomer

π bands (deep tunneling), the comparison of through-bridge
effective coupling due to oligomers of PPP and heterocyclic
oligomers is undoubtedly in favor of the latter, since the
asymptotics of decay constant for PPP bridges is substantially
larger. It should be emphasized however, that because of an
unusual behavior ofδ in polyheterocycles (as discussed below),
the energies of truly asymptotic behavior of decay constant can
be too large to be of any practical significance, while for lesser
energies the decay constant for heterocyclic oligomers can turn
to be much larger than that for PPP oligomers.
The asymptotic behavior of the decay constant, eq 14, with

NM - N′M and C defined in eq 21 and the characteristic
parameters taken from literature, is visualized in Figure 2a by
solid curves. The exact dependence ofδ onE, eq 8, above the
upper (Eupper

edge) and below the lower (Elower
edge) π band edges is

shown by bold-faced lines in the same figure. A singular-type
dependence in the case of polythiophene (PTh) oligomers is in
focus of the forthcoming discussion.
B. Deeps (Antiresonances) in Effective Coupling.In the

examples represented by eq 19, the only monomer which
possesses the “electronic contact breaking ability” expressed
in eq 15 is a five-membered heterocycle. According to eqs 15
and 19, the oligomers of polyheterocycle block the transfer of
electrons at two energies

Figure 1. Oligomers of nonalternated CH-chain, polyene, poly-
paraphenylene in quinoid (up) and aromatic (down) conformations, and
polyheterocycle.

âC-CGRl,Rr

M (E) ) γint

{ eη

E2 - e2η
, vinylene group

2e-η

(E2 - 2e-2η)2 - E2e2η
, phenyl ring (quinoid form)

2 coshη
(E2 - 2 cosh(2η) + 1)(E2 - 4 cosh2 η)

,

phenyl ring (aromatic form)

eη(E- εX) + γX
2 (E2 - e-2η)

(E2 + Ee-η - e2η)[(E- εX)(E
2 - Ee-η - e2η) - 2γX

2 (E- e-η)]
heterocycle

(19)

âC-CGRl,Rl

M (E) ) âC-CGRr,Rr

M (E) ) γint

{ E

E2 - e2η
, vinylene group

E(E2 - e2η - 2e-2η)

(E2 - 2e-2η)2 - E2e2η
, phenyl ring (quinoid form)

E[E2 - 2 cosh(2η) - 1]

(E2 - 2 cosh (2η) + 1)(E2 - 4 cosh2 η)
,

phenyl ring (aromatic form)

E(E- εX)[E
2 - 2 cosh(2η)] - γX

2 (E2 - e-2η)

(E2 + Ee-η - e2η)[(E- εX)(E
2 - Ee-η - e2η) - 2γX

2 (E- e-η)]
,

heterocycle
(20)

NM - N′M ) {1244
3

C ) {1 CH2 chain
(the McConnell result, 1)

1 polyene
2γinte

-η PPP (quinoid form)
2γint coshη PPP (aromatic form)

γintγX
2 polyheterocycle

(21)
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An exception is presented by the specific value ofεX ) e-η. In
this caseGRl,Rr

M (E) is not equal to zero atE ) E2 ) e-η, so that

E1 ) -eη(γX
-2 + e-2η) is the only energy at which eq 15 is

fulfilled. It is interesting to note that, in heterocycles, where
εX ) e-η, the energyE) E2 ) e-η corresponds to the monomer
eigenstate with nodes at both monomer binding sites. This gives
rise to an N-fold degenerate band. Nevertheless, at this
particular energy the effective coupling is not equal to zero due
to the contribution coming from nondegenerateπ bands.
A review of literature data shows that the expected values of

heteroatom parametersεX andγX place the solutions to eq 22
inside (E1) and outside (E2) of the π electron spectrum of
heterocyclic oligomers. In these calculations we used two sets
of sulfur parameters for thiophene ring suggested by Birnbaum
et al.,37 εX ) 0.25,γX ) 0.38, and by Van-Catledge,38 εX )
1.11,γX ) 0.69, and labeled in Figures 2 and 3 as I and II,
respectively. We setη ) 0.1 that is close to the experimental
estimate of the C-C bond alternation parameter.39 For param-
eters just specified the value ofE2 is above the upper conduction
π band of polythiophene:E2 ) -8 [(-3.757) eV≈ 30 eV]
for εX ) 0.25,γX ) 0.38, andE2 ) -3.3 [(-3.757) eV≈ 12
eV] for εX ) 1.11,γX ) 0.69. Though these values are far
beyond the energies of experimental interest (the ionization
potential of PTh is about 7 eV40), the singularity of the decay
constant atE2 affects the bridge mediated tunneling considerably
not far from the upper edge of theπ electron spectrum, see
Figure 3a.
The singular-type dependence ofδ and, correspondingly,

antiresonance-type behavior ofTDA shown in Figure 2a and 3a,
respectively, are in a sharp distinction with predictions of the
McConnell model (curves labeled CH), as well as with the
dependence of these same quantities on the electron energy in
the case of polyene and PPP oligomers shown in the same
figures.
For the parameters indicated above the energy of zero

effective couplingE1 is within the gap between the HO-1 and
HO bands (HO: highest occupied) of polythiophene oligomers.

This band gap is very narrow24 and for this reason one can
expect that nearE1 the switching ability of the kind illustrated
in Figure 3a will be pronounced much more sharply. In the
other words, zeros of effective coupling that are close to the
oligomer electron carrying states can reveal themselves as
antiresonances in, e.g., the conductance of molecular wires.
Unlike eq 15, eq 18 cannot be fulfilled for a five-membered

heterocycle, as well as for vinylene group, and phenyl ring in
the quinoid conformation. The calculation of bilinear combina-
tion 17 with the use of expressions 19 and 20 for phenyl ring
in the case of aromatic geometry yields (forη * 0)

i.e., the solutions to eq 18 are given by

It is seen that the above energies coincide with poles of
GRl,Rr

C6H4(E). The monomer eigenstates with energiesE′1 andE′2
are doubly degenerate and one of two states at each of these
energies has a node at the monomer binding sites. Therefore,
the Green functionGRl,Rr

C6H4(E) has only simple polesE′1,2, see eq
19. The full monomerπ electron spectrum containing six levels
is restored by bilinear combination 23, where the poles at
energiesE′1 andE′2 are of the second order.
In accordance with eqs 9 and 10, ifN * 1, the effective

coupling falls to zero at energies 24 lying within very narrow
gaps between HO-1 and HO bands, and LU and LU+1 bands
(LU; lowest unoccupied). In the quinoid conformation of PPP
oligomers these gaps are absent.29

Strictly speaking, the concept of effective coupling fails at
energies which are close to the electron levels of bridging
molecule. For PPP oligomers it suggests, in particular, thatTDA
) 0, if E ) E′1,2, at any length exceptN ) 1. Such an
exception is, of course, unphysical. Nevertheless, as mentioned
above one can expect anomalies in observables related to zeros
of effective coupling. For example, the strict nonperturbative

Figure 2. Decay constantδ(E) as a function of energy:a (to the left) above (x ) E - Eupper
edge) and below (x ) |E - Elower

edge|) π electron spectrum;
b (to the right) within HO-LU-band gap (x) ELU

edge- E); Eupper
edge (Elower

edge) is the upper (lower) edge of theπ electron spectrum,ELU
edgeis the lower edge

of the LU-band. Solid curves show asymptotics of decay constant defined in eqs 14 and 21. Bold-faced curves are calculated from eq 9, with
parameters specified in the text.

E1,2) - eη

2γX
2
(1( x1+ 4γX

2e-η(εX + γX
2e-3η)) (22)

âC-C
2 [GRl,Rl

C6H4(E)GRr,Rr

C6H4(E) - (GRl,Rr

C6H4(E))2] )

γint
2 (E2 - e2η)(E2 - e-2η)

(E2 - 2 cosh(2η) + 1)2 (E2 - 4 cosh2 η)
(23)

E′1,2) (x2 cosh(2η) - 1 (24)
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treatment of zero field conductance of PPP oligomer (in the
aromatic conformation) which is spanned between metal
electrodes predicts a sharp decrease of this quantity from nearly
maximal to zero value at the Fermi energy close to values,23

including the case ofN ) 1.
C. Through HO-LU-Band Gap Coupling. Here, we

specify the expressions of effective coupling for energies within
the gap between HO and LU bands.
The oligomers of polyene are the simplest stable of linear

conjugated molecules. Theirπ electron spectrum contains only
one gap between the valence (filled) and conduction (unfilled)
bands. Defined in the limitN f ∞ the HO-LU-band gap is
of value 4 sinh|η| in units |â|.41 It is symmetric with respect
to E ) 0, and hence, the ingap energies are|E| < 2 sinh |η|.
With regard to the Green function matrix elements for the

vinylene group given in eqs 19 and 20, expression 10 takes the
form

where, according to eq 8,

For η > 0, the above equations are valid for both ingap and
out-of-π-band energies, provided the condition eδN . 1 is
satisfied. Ifη < 0 andN > e2η/(1 - e2η), there are two in-gap
levels in theπ electron spectrum of polyenes.23 Therefore, for
energies close to these levels, the preexponential factor in eq
25 has to be re-defined (in the particular context of the electron-
transfer process), but an exponential dependence of the effective
coupling onN with the decay constant defined in eq 26 is still
applicable (see the discussion in section II).
For ingap energies,|E| < 2 sinh η and η > 0, the decay

constant is a nonmonotonic function of energy that takes its
maximal valueδm in the middle of the gap and symmetrically
decreases to zero value when the electron energy goes towards
the conduction (valence) band boundary. Qualitatively, the
preexponential factorTDA

0 exhibits the same dependence on
energy with the maximal valueTDA

0 |max ) âh2/|â| at E ) 0.

Outsideπ bands,|E| > 2 coshη, and for both signs of the
alternation parameter the preexponential factor saturates with
the increase of energy at the valueâh2/|â|, while δ increases
monotonously. The asymptotic behavior ofTDA for polyene
bridges is the same as for nonalternated carbon chain, see eqs
14 and 21.
Qualitatively, the behavior of the decay constant and effective

coupling within the HO-LU-band gap described above is
identical for all alternant (all carbon) oligomers. The depen-
dence ofδ andTDA on E for polyene and PPP oligomers is
represented in Figures 2b and 3b. We setη ) 0.1333 for
polyenes,38 andη ) 0.1,γint ) 1.0, for PPP oligomers assumed
to be in an aromatic conformation.
Note that withâ ) -3.757 eV39 used in our calculations,

these parameters give a good agreement with the experimental
estimates of HO-LU-band gaps in polyacetylene (1.8 eV42) and
polyparaphenylene (3.4 eV43); just as parameters used above
for polythiophene oligomers (also represented in Figures 2b and
3b) agree well with the observed value 2 eV.44 Precisely, we
obtain HO-LU-band gaps equal to 2, 3.3, 2.05 (I), and 2.38
(II) electron-volts for oligomers of polyene, polyparaphenylene,
and polythiophene, respectively.
Furthermore, since for alternant oligomersGRl,Rl

M (E) takes
zero value in the middle of the HO-LU-band gap, for all such
oligomers covered by the structural formula M-M-‚‚‚-M we
obtainTDA

0 |max ) âh2/|â| at E) 0, eδm|âC-CGRl,Rr

M (0)|(1, where
sign “+” or “-” has to be taken depending on whether the value
of |âC-CGRl,Rr

M (0)| is larger or smaller than unity. To recall, the
case of the gap closing,|âC-CGRl,Rr

M (0)| ) 1, is out of the
consideration.
We can prove that in any band gap of symmetric oligomers,

GRl,Rl

M (E) ) GRr,Rr

M (E), at the energy satisfying equation

the preexponential factor attains its maximumâh2/|â|, whereas
the decay constant takes the value ln|âC-CGRl,Rr

M (E)|(1. Thus,

Figure 3. Through-bridge tunneling efficiency, (âC-CTDA/âh2)2, as a function of energy, calculated with the use ofδ shown in Figures 2a and 2b,
andN ) 24 for CH chain (only in 3a], i.e., to the left); indistinguishable from polyene curve),N ) 12 for polyene chain, andN ) 6 for aromatic-
ring chains of polyparaphenylene and polythiophene.

TDA ) âh2

|â|
2 sinhδ
|e-2η - eδ|

e-δN (25)

δ) ln1/2(|2 cosh(2η) - E2| + x[2 cosh(2η) - E2]2 - 4)
(26)

GRl,Rl

Μ (E) ) 0 (27)

TDA ) âh2

|âC-C|
|âC-CGRl,Rr

M (E)|(N (28)
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whereE is a solution to eq 27 in the given band gap, and “+”
corresponds to|âC-CGRl,Rr

M (E)| < 1, and “-” corresponds to
|âC-CGRl,Rr

M (E)| > 1. It is interesting to notice the formal
similarity between the equation obtained and the asymptotic
expression of the effective coupling, see discussion above eq
14.
Equations 27 and 28 give a useful estimate of the effective

coupling. For the HO-LU-band gap of alternant oligomers,
where the effective coupling as a function of energy is
symmetric with respect to the middle of the gap, it corresponds
to the minimal value ofTDA. In other cases it gives a value
that is usually very close to the minimum of the effective
coupling in the given gap, as, e.g., for the HO-LU-band gap
of oligothiophenes shown in Figures 2b and 3b.
One can easily see from Figures 2b and 3b that in the middle

of the gap the tunneling efficiency across polyene and poly-
thiophene bridges with the same number of carbons in a row
(NC) is nearly identical, whereas it is lower for oligomers of
polyparaphenylene, in clear correlation with the width of the
band gap. (Different molecules of equal length is a kind of
exotic. It is more informative therefore, to compare oligomers
with equalNC’s. In the presented examples, such oligomers
are close in their lengths.) The data onδm for these and a
number of other oligomers are summarized in ref 18.
It is of interest to compare the above results with an estimate

that can be obtained from the through-rectangular-barrier
tunneling probability mentioned already in section II. For this
purpose we replace the barrier hightV by the half-width of the
HO-LU-band gap,∆HL/2 (in units|â|), and the effective mass
of electronm* by p2/(2|â|R2). The suggested replacement is
natural and can be supported by strict arguments. In such a
representation, the effective coupling takes the form

where 0e E e ∆HL/2, andE ) 0 corresponds to the middle of
the gap.
With the parameters used in Figures 2b and 3b, eq 29 gives

the following values of the decay constantδm ) 0.516, 0.663,
and 0.510, 0.562 which are in a good agreement with the values
δm ) 0.533, 0.737, and 0.564, 0.569 calculated from eq 10 for
oligomers of polyene, polyparaphenylene, and polythiophene,
models I and II, respectively.
It should be stressed, however, that eq 29 does not describe

the above discussed anomalies of the effective coupling as a
function of energy. The definition of the decay constant given
in eq 29 is also incorrect in the case of the existence of in-gap
states. So, in general, for the purpose of estimating the
efficiency of through-molecule tunneling the model of rectan-
gular barrier should be used with a good deal of precaution.
D. Discussion of Some Related Results.A number of

advantages of the Green function approach to the description
of the electron-transfer phenomena has been repeatedly em-
phasized in the literature.5,6,11,14 However, in the present context
this has been actually enjoyed only in the development and
application of efficient computational schemes.6,14,45 In relevant
analytical treatments published thus far, the Green function
technique has been used either in a perturbation-theory manner46

or for a detailed analysis of the McConnell bridge model in
various contexts.2,6,11 The above discussion shows that the
power of the Green function method can result in the exact and,
importantly, easily handled analytical expressions for the
effective coupling that take into account essentials of theπ
electronic structures.

In the particular case of polyene bridges, a complicated
expression of the effective coupling which, however, can be
transformed to eqs 25 and 26 was found earlier.6

We have noticed above that the tunnel conductance of a
metal-molecular heterojunction is proportional to the square of
effective coupling for the given molecule. The quantum
conductance of the one-dimensional tight-binding model of
molecular heterojunctions has been discussed by Joachim and
Venuesa,30 whose model was restricted to polyenes described
by the same Hamiltonian as used here and in ref 6. They
found: “In the homo-lumo gap, we find that the variation of
t(EF) with N can be approximated for largeN by an exponential
law

wheret0 is a function ofâ/a, â/h, R/â andγ is a function only
of â′/â”.
The correspondence with our notations is as follows:t(EF)

is up to a factor (TDA/âC-C)2, EF ≡ |â|E, â′ ≡ â expη, â ≡ â
exp(-η), R ≡ âh, γ ≡ δ, a is on-site electron energy at carbons,
and parameterh represents a 1D electronic band used by
Joachim and Vinuesa30 to model the source and drain electrodes
in molecular contacts. In a more general approach, ref 11
parameterh is known to enter the spectral density. The square
of the spectral density is simply a factor in the expression of
the tunnel conductance, see, e.g., ref 11.
Thus, eq 5 of ref 30 can be directly compared with our eq

25. Unlike the latter, neither the exponential decay constant
nor the preexponential factor were defined in ref 30.
To avoid confusion, we note also: (i) the on-site energya

can be taken as the reference point of energy and consequently,
it can be set equal to zero; thus, according to the above eq 5
the tunnel conductance depends on a parameter of infinite value;
[in fact a enters the expression oft(EF) as (EF - a)]; (ii) the
most principal dependence of the tunnel conductance on the
Fermi energy, i.e., the dependence oft0 andγ onEF was neither
mentioned nor properly indicated in eq 5.

VI. Concluding Remarks

We have proved that tunneling across a chain of monomers
of arbitrary complexity coupled to each other via the nearest-
neighbor hopping integrals is described by an exponential law
of exactly the same form as the handbook formula for the
tunneling probability through a rectangular barrier. An impor-
tant distinction, however, is that we find the modulus of
imaginary part of the complex wave vector appearing in the
exponent not from the effective-mass-type (parabolic) dispersion
law with an ad hoc choice of the barrier hight but from the
exact relation between the energy and wave vector for the given
electronic structure of the molecule.
The tunneling efficiency is found to be dependent on the full

spectrum of the oligomer one-electron states, and not only on
the width of the particular band gap through which tunneling
occur. Nevertheless, with the interrelation between the phe-
nomenological parameters (barrier hight, effective mass, and
lattice constant) and the parameters of Hamiltonian of the
molecule, which are suggested in this work, the function 29 is
shown to restore well the dependence of the effective coupling
on energy, to the least in the examples given.
The dependence of the effective coupling and its exponent

(decay constant) on the molecular electronic structure is
illustrated for simple (polyenes) and more complex (oligophen-
ylenes, oligothiophenes) linear molecules. Contrary to drastic

TDA ) e-x(∆HL/2- E)N (29)

t(EF) ) t0 exp[-γ(2N- 2)] (5)
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distinctions between the parabolic dispersion law and the band
structure of real conjugated oligomers (consisting of a number
of bands divided by band gaps) the above referred formula for
the tunneling probability gives, as demonstrated, a good
quantitative estimate of the decay constant of the through HO-
LU-band gap effective coupling. At the same time, the barrier-
type model does not really lead to the understanding of the
relationship between the molecular electronic structure and
through-molecule tunneling efficiency, and moreover, it is quite
misleading in the case of the predicted anomalies of the effective
coupling and when theπ electron spectrum contains ingap states.
It is shown that for oligomers built up of monomers such

that either eq 15 or eq 18, or both, are fulfilled, the decay
constant of effective coupling in DBA systems is a singular
function of energy. This implies that in addition to a smooth
parabolic-type behavior of the effective coupling as a function
of energy (as that illustrated here for the HO-LU-band gap)
the conjugated oligomers consisting of the monomers, whose
Green functions obey eqs 15 and 18, possess anomalous
switching abilities. In the context of the molecular wire
conductance, this leads to a conclusion that in response to
changes of the Fermi energy within theπ electron spectrum
the ohmic conductance can drop to zero value at certain energies.
The predicted variety of switching properties of conjugated
oligomers and a comparative ease of their processing suggest a
number of appealing applications in the field of molecular
electronics. From this point of view an important message of
the above analysis is that the effective coupling can be examined
at the monomer level. Thus, the charge transfer properties of
DBA and related systems can be overseen and designed
essentially on the basis of the monomer electronic structure.
It must be stressed that the model adopted is restricted to the

π electron subsystem of a rigid and regular carbon backbone.
Certainly, as such it cannot pretend to give an accurate
description of real molecules. However, since the results
obtained are exact in the model sense, they indicate the basic
trends of the nonadiabatic electron transfer across conjugated
molecules that have to be elaborated further in a number of
aspects. In particular, we expect that the inclusion ofσ electron
subsystem will result in negligible corrections to the value of
the through HO-LU-band gap effective coupling. But for other
band gaps, as well as outside one-particleπ bands, the role of
σ-states manifold in determining the effective coupling cannot
be ignored.
Throughout all the above discussion we have extensively used

the understanding of one-particleπ electron spectra of conju-
gated oligomers developed in our previous analysis.24,29 The
results of the present work combined with findings of cited
papers suggest a convenient tool for quick and reasonable
evaluation of the quantity playing the basic role in the charge-
transfer phenomena.
As was demonstrated in ref 24 and 29, see also references

therein, the HO-LU-band gap of linear conjugated molecules,
in particular, oligophenylenes and oligothiophenes, depends on
the character of the carbon backbone geometry, aromatic or
quinoid, with a pronounced tendency to a smaller band gap in
conjugated oligomers with the quinoid structure. Also, it was
shown that in the case of quinoid geometry the appearance of
ingap states due to perturbation (say, by extra charging or
excitation of the molecule) is more likely, than in the aromatic
conformation of carbon backbone. For example, in polyenes
with the reversed alternation of C-C bonds (quinoid conforma-
tion) and the number of double bonds larger, than e2η/(1- e2η),
η < 0, theπ electron spectrum does contain two ingap states

characterized by preferable distribution of the electron density
near the chain ends.23 The perturbation-induced HO-LU-band
gap narrowing/closing and the appearance of ingap states are
the likely mechanisms of a strong suppression/enhancement of
the electron transfer across the molecule. These are readily
foreseeable in the framework of the suggested approach by
examining changes in the effective coupling in response to an
appropriate modification of the molecular Hamiltonian.
In conclusion, on the basis of a tight-binding Hamiltonian

known to give a reasonable description of conjugated systems
and using the Green function technique we have derived the
exact analytical expression of the through-bridge effective
coupling for conjugated oligomers of the kind M-M-‚‚‚-M,
a wide class of organic molecules considered as perspective
candidates to be used in molecular electronics. This is the
central result of the work. It has been examined in many
details: the asymptotics and zeros of through band-gap effective
coupling have been found, as well as the expressions of this
quantity for particular oligomers. It is also shown that for the
Fermi energy in the middle of the HO-LU-band gap of alternant
oligomers the effective coupling takes an especially simple form.
New physics and some applied aspects of the results obtained
have been discussed.
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